Segger Model Inference¶
Overview¶
Inference with the trained Segger model involves using the learned Graph Neural Network to predict transcript-to-cell associations in spatial transcriptomics data. The inference process transforms spatial data into cell segmentation results through link prediction, enabling both cell identification and fragment detection.
Inference Pipeline¶
Overall Workflow¶
Trained Model → Spatial Data → Graph Construction → Node Embeddings → Similarity Scores → Cell Assignment → Post-processing
↓ ↓ ↓ ↓ ↓ ↓ ↓
Learned Weights Transcripts Heterogeneous GNN Forward Link Prediction Thresholding Final Results
Boundaries Graphs Pass Scores Filtering + Fragments
Key Steps¶
- Model Loading: Load trained Segger model from checkpoint
- Data Preparation: Construct heterogeneous graphs from spatial data
- Embedding Generation: Generate node embeddings using the trained model
- Similarity Computation: Calculate transcript-to-cell similarity scores
- Assignment Decision: Assign transcripts to cells based on confidence scores
- Fragment Detection: Group unassigned transcripts into fragments
Model Loading¶
Loading Trained Model¶
from segger.models.segger_model import Segger
import torch
# Load trained model
model = Segger(
num_tx_tokens=5000,
init_emb=16,
hidden_channels=64,
num_mid_layers=3,
out_channels=32,
heads=4
)
# Load trained weights
checkpoint = torch.load('path/to/checkpoint.ckpt')
model.load_state_dict(checkpoint['state_dict'])
model.eval() # Set to evaluation mode
Model Configuration¶
Ensure inference parameters match training configuration:
# Verify model configuration matches training
assert model.num_tx_tokens == 5000, "Vocabulary size mismatch"
assert model.hidden_channels == 64, "Hidden dimension mismatch"
assert model.out_channels == 32, "Output dimension mismatch"
assert model.heads == 4, "Attention heads mismatch"
Data Preparation¶
Graph Construction¶
Inference requires the same graph structure used during training:
# Construct heterogeneous graph for inference
data = {
"tx": { # Transcript nodes
"id": transcript_ids,
"pos": spatial_coordinates,
"x": feature_vectors
},
"bd": { # Boundary nodes
"id": boundary_ids,
"pos": centroid_coordinates,
"x": geometric_features
},
"tx,neighbors,tx": { # Transcript proximity edges
"edge_index": neighbor_connections
},
"tx,belongs,bd": { # Transcript-boundary edges (for inference)
"edge_index": containment_relationships
}
}
Feature Processing¶
Transcript Features¶
# Use same feature processing as training
if has_scrnaseq_embeddings:
transcript_features = gene_celltype_embeddings[gene_labels]
else:
transcript_features = embedding_layer(gene_token_ids)
Boundary Features¶
# Compute geometric features for boundaries
def compute_boundary_features(boundary_polygons):
features = []
for polygon in boundary_polygons:
area_val = polygon.area
convex_hull = polygon.convex_hull
convexity = convex_hull.area / area_val
# Minimum bounding rectangle
mbr = polygon.minimum_rotated_rectangle
mbr_area = mbr.area
# Envelope (axis-aligned bounding box)
envelope = polygon.envelope
env_area = envelope.area
elongation = mbr_area / env_area
# Circularity
min_radius = compute_minimum_bounding_radius(polygon)
circularity = area_val / (min_radius ** 2)
features.append([area_val, convexity, elongation, circularity])
return torch.tensor(features, dtype=torch.float32)
Inference Process¶
Forward Pass¶
# Generate node embeddings
with torch.no_grad():
embeddings = model(data.x, data.edge_index)
# Separate transcript and boundary embeddings
tx_embeddings = embeddings[data.tx_mask]
bd_embeddings = embeddings[data.bd_mask]
Similarity Score Computation¶
Transcript-to-Cell Similarity¶
def compute_similarity_scores(tx_embeddings, bd_embeddings, edge_index):
"""Compute similarity scores between transcripts and boundaries."""
# Extract source and target indices
tx_indices = edge_index[0]
bd_indices = edge_index[1]
# Get embeddings for connected nodes
tx_emb = tx_embeddings[tx_indices]
bd_emb = bd_embeddings[bd_indices]
# Compute dot product similarity
similarity_scores = torch.sum(tx_emb * bd_emb, dim=1)
# Apply sigmoid for probability
probabilities = torch.sigmoid(similarity_scores)
return probabilities, similarity_scores
Receptive Field Construction¶
def construct_receptive_field(transcripts, boundaries, k_bd=3, dist_bd=10.0):
"""Construct receptive field for transcript-to-cell assignment."""
# Find nearest boundary cells for each transcript
from sklearn.neighbors import NearestNeighbors
# Extract coordinates
tx_coords = transcripts[['x', 'y']].values
bd_coords = boundaries[['centroid_x', 'centroid_y']].values
# Build nearest neighbor index
nn = NearestNeighbors(n_neighbors=k_bd, radius=dist_bd)
nn.fit(bd_coords)
# Find neighbors
distances, indices = nn.kneighbors(tx_coords)
# Filter by distance threshold
mask = distances <= dist_bd
filtered_indices = []
filtered_distances = []
for i, (dist, idx) in enumerate(zip(distances, indices)):
valid_mask = mask[i]
filtered_indices.append(idx[valid_mask])
filtered_distances.append(dist[valid_mask])
return filtered_indices, filtered_distances
Cell Assignment¶
Assignment Decision¶
def assign_transcripts_to_cells(similarity_scores, score_threshold=0.7):
"""Assign transcripts to cells based on similarity scores."""
# Find best matching cell for each transcript
best_scores, best_cells = torch.max(similarity_scores, dim=1)
# Apply confidence threshold
confident_mask = best_scores >= score_threshold
# Create assignment results
assignments = {
'transcript_id': [],
'cell_id': [],
'confidence_score': [],
'assigned': []
}
for i, (score, cell_id) in enumerate(zip(best_scores, best_cells)):
assignments['transcript_id'].append(i)
assignments['cell_id'].append(cell_id.item())
assignments['confidence_score'].append(score.item())
assignments['assigned'].append(confident_mask[i].item())
return assignments
Confidence Score Analysis¶
def analyze_confidence_scores(scores):
"""Analyze distribution of confidence scores."""
import numpy as np
from scipy import stats
# Convert to numpy for analysis
scores_np = scores.detach().cpu().numpy()
# Basic statistics
stats_summary = {
'mean': np.mean(scores_np),
'std': np.std(scores_np),
'min': np.min(scores_np),
'max': np.max(scores_np),
'median': np.median(scores_np)
}
# Percentiles
percentiles = [25, 50, 75, 90, 95, 99]
for p in percentiles:
stats_summary[f'p{p}'] = np.percentile(scores_np, p)
# Find knee point for automatic thresholding
# Use the method from the Segger paper
knee_point = find_knee_point(scores_np)
stats_summary['knee_point'] = knee_point
return stats_summary
def find_knee_point(scores):
"""Find knee point in score distribution for automatic thresholding."""
from kneed import KneeLocator
# Sort scores
sorted_scores = np.sort(scores)
# Create cumulative distribution
cumulative = np.arange(1, len(sorted_scores) + 1) / len(sorted_scores)
# Find knee point
kneedle = KneeLocator(
sorted_scores, cumulative,
S=1.0, curve='concave', direction='increasing'
)
return kneedle.knee if kneedle.knee else np.median(scores)
Fragment Detection¶
Unassigned Transcript Handling¶
def detect_fragments(unassigned_transcripts, k_tx=4, dist_tx=5.0, similarity_threshold=0.5):
"""Group unassigned transcripts into fragments."""
# Construct transcript-transcript similarity graph
fragment_graph = construct_fragment_graph(
unassigned_transcripts, k_tx, dist_tx, similarity_threshold
)
# Find connected components
from scipy.sparse.csgraph import connected_components
n_components, labels = connected_components(fragment_graph, directed=False)
# Assign fragment IDs
fragment_assignments = {}
for i, label in enumerate(labels):
transcript_id = unassigned_transcripts[i]
fragment_assignments[transcript_id] = f"fragment_{label}"
return fragment_assignments, n_components
Fragment Graph Construction¶
def construct_fragment_graph(transcripts, k_tx, dist_tx, similarity_threshold):
"""Construct similarity graph for unassigned transcripts."""
# Extract coordinates and features
coords = transcripts[['x', 'y']].values
features = transcripts['features'].values
# Build nearest neighbor graph
nn = NearestNeighbors(n_neighbors=k_tx, radius=dist_tx)
nn.fit(coords)
# Find neighbors
distances, indices = nn.radius_neighbors(coords, radius=dist_tx)
# Compute similarity scores
edges = []
for i, neighbors in enumerate(indices):
for j in neighbors:
if i != j:
# Compute feature similarity
sim_score = compute_feature_similarity(features[i], features[j])
# Add edge if similarity exceeds threshold
if sim_score >= similarity_threshold:
edges.append((i, j, sim_score))
# Convert to sparse matrix
from scipy.sparse import csr_matrix
if edges:
rows, cols, data = zip(*edges)
n_transcripts = len(transcripts)
fragment_graph = csr_matrix((data, (rows, cols)), shape=(n_transcripts, n_transcripts))
else:
fragment_graph = csr_matrix((len(transcripts), len(transcripts)))
return fragment_graph
def compute_feature_similarity(feature1, feature2):
"""Compute similarity between transcript features."""
# Cosine similarity
dot_product = np.dot(feature1, feature2)
norm1 = np.linalg.norm(feature1)
norm2 = np.linalg.norm(feature2)
if norm1 == 0 or norm2 == 0:
return 0.0
similarity = dot_product / (norm1 * norm2)
return similarity
Batch Processing¶
Large Dataset Handling¶
def batch_inference(model, data_loader, device='cuda'):
"""Perform inference on large datasets in batches."""
model.to(device)
model.eval()
all_results = []
with torch.no_grad():
for batch in data_loader:
# Move batch to device
batch = batch.to(device)
# Generate embeddings
embeddings = model(batch.x, batch.edge_index)
# Compute similarity scores
scores = compute_batch_similarities(batch, embeddings)
# Store results
batch_results = {
'transcript_ids': batch.transcript_ids,
'cell_ids': batch.cell_ids,
'similarity_scores': scores,
'batch_idx': batch.batch
}
all_results.append(batch_results)
# Combine results from all batches
combined_results = combine_batch_results(all_results)
return combined_results
Memory Management¶
def optimize_memory_usage(batch_size, model_size):
"""Optimize memory usage during inference."""
# Estimate memory requirements
estimated_memory = estimate_inference_memory(batch_size, model_size)
# Adjust batch size if needed
if estimated_memory > available_memory:
optimal_batch_size = find_optimal_batch_size(model_size, available_memory)
print(f"Reducing batch size from {batch_size} to {optimal_batch_size}")
return optimal_batch_size
return batch_size
def estimate_inference_memory(batch_size, model_size):
"""Estimate memory usage for inference."""
# Model parameters
model_memory = model_size * 4 # 4 bytes per float32
# Activations (approximate)
activation_memory = batch_size * 1000 * 64 * 4 # Assume 1000 nodes, 64 features
# Total memory
total_memory = model_memory + activation_memory
return total_memory
Post-processing¶
Result Aggregation¶
def aggregate_inference_results(assignments, fragments):
"""Aggregate inference results into final segmentation."""
# Combine cell assignments and fragment assignments
final_results = {
'transcript_id': [],
'final_cell_id': [],
'assignment_type': [], # 'cell' or 'fragment'
'confidence_score': []
}
# Add cell assignments
for tx_id, cell_id, score, assigned in zip(
assignments['transcript_id'],
assignments['cell_id'],
assignments['confidence_score'],
assignments['assigned']
):
if assigned:
final_results['transcript_id'].append(tx_id)
final_results['final_cell_id'].append(cell_id)
final_results['assignment_type'].append('cell')
final_results['confidence_score'].append(score)
# Add fragment assignments
for tx_id, fragment_id in fragments.items():
final_results['transcript_id'].append(tx_id)
final_results['final_cell_id'].append(fragment_id)
final_results['assignment_type'].append('fragment')
final_results['confidence_score'].append(0.0) # No confidence for fragments
return final_results
Quality Control¶
def quality_control_checks(results, min_transcripts_per_cell=5):
"""Perform quality control checks on inference results."""
# Count transcripts per cell
from collections import Counter
cell_counts = Counter(results['final_cell_id'])
# Filter cells with too few transcripts
valid_cells = {cell_id: count for cell_id, count in cell_counts.items()
if count >= min_transcripts_per_cell}
# Filter results
filtered_results = {
'transcript_id': [],
'final_cell_id': [],
'assignment_type': [],
'confidence_score': []
}
for i, cell_id in enumerate(results['final_cell_id']):
if cell_id in valid_cells:
for key in filtered_results:
filtered_results[key].append(results[key][i])
return filtered_results, valid_cells
Output Formats¶
Standard Output¶
def save_inference_results(results, output_path, format='parquet'):
"""Save inference results in specified format."""
import pandas as pd
# Convert to DataFrame
df = pd.DataFrame(results)
if format == 'parquet':
df.to_parquet(output_path, index=False)
elif format == 'csv':
df.to_csv(output_path, index=False)
elif format == 'h5ad':
# Convert to AnnData format
adata = convert_to_anndata(df)
adata.write(output_path)
else:
raise ValueError(f"Unsupported format: {format}")
print(f"Results saved to {output_path}")
def convert_to_anndata(results_df):
"""Convert results to AnnData format for downstream analysis."""
import scanpy as sc
import anndata as ad
# Group by cell ID
cell_groups = results_df.groupby('final_cell_id')
# Create cell-gene matrix
cell_gene_matrix = []
cell_ids = []
for cell_id, group in cell_groups:
# Count transcripts per gene
gene_counts = group['gene_name'].value_counts()
cell_gene_matrix.append(gene_counts)
cell_ids.append(cell_id)
# Convert to DataFrame
cell_gene_df = pd.DataFrame(cell_gene_matrix, index=cell_ids)
cell_gene_df = cell_gene_df.fillna(0)
# Create AnnData object
adata = ad.AnnData(X=cell_gene_df.values,
obs=pd.DataFrame(index=cell_ids),
var=pd.DataFrame(index=cell_gene_df.columns))
return adata
Performance Optimization¶
GPU Acceleration¶
def optimize_gpu_inference(model, data, device='cuda'):
"""Optimize GPU inference performance."""
# Move model and data to GPU
model = model.to(device)
data = data.to(device)
# Enable CUDA optimizations
torch.backends.cudnn.benchmark = True
# Use mixed precision if available
if hasattr(torch, 'autocast'):
with torch.autocast(device_type='cuda', dtype=torch.float16):
embeddings = model(data.x, data.edge_index)
else:
embeddings = model(data.x, data.edge_index)
return embeddings
Parallel Processing¶
def parallel_inference(model, data_list, num_workers=4):
"""Perform inference in parallel across multiple workers."""
from concurrent.futures import ProcessPoolExecutor
import multiprocessing as mp
# Set multiprocessing start method
mp.set_start_method('spawn', force=True)
# Split data across workers
chunk_size = len(data_list) // num_workers
data_chunks = [data_list[i:i+chunk_size] for i in range(0, len(data_list), chunk_size)]
# Process in parallel
with ProcessPoolExecutor(max_workers=num_workers) as executor:
futures = [executor.submit(process_chunk, model, chunk) for chunk in data_chunks]
results = [future.result() for future in futures]
# Combine results
combined_results = combine_chunk_results(results)
return combined_results
Troubleshooting¶
Common Issues¶
Memory Errors¶
# Solutions:
# 1. Reduce batch size
batch_size = 1 # Reduce from default
# 2. Use gradient checkpointing
model.gradient_checkpointing_enable()
# 3. Clear GPU cache
torch.cuda.empty_cache()
Slow Inference¶
# Solutions:
# 1. Enable CUDA optimizations
torch.backends.cudnn.benchmark = True
# 2. Use mixed precision
with torch.autocast(device_type='cuda'):
embeddings = model(data.x, data.edge_index)
# 3. Optimize data loading
data_loader = DataLoader(dataset, batch_size=batch_size,
num_workers=4, pin_memory=True)
Poor Quality Results¶
# Solutions:
# 1. Check model configuration matches training
# 2. Verify data preprocessing is identical
# 3. Adjust confidence threshold
# 4. Check for data distribution shifts
Best Practices¶
Inference Configuration¶
- Model Consistency: Ensure inference parameters match training exactly
- Data Preprocessing: Use identical preprocessing as training
- Confidence Thresholds: Start with recommended thresholds and adjust based on data
- Memory Management: Monitor GPU memory usage and optimize batch sizes
Quality Assurance¶
- Validation Checks: Verify inference results against known ground truth
- Confidence Analysis: Analyze score distributions for appropriate thresholds
- Fragment Detection: Enable fragment detection for comprehensive coverage
- Post-processing: Apply quality control filters to remove low-quality assignments
Performance Optimization¶
- GPU Utilization: Maximize GPU usage with appropriate batch sizes
- Parallel Processing: Use multiple workers for data loading
- Memory Efficiency: Optimize memory usage with mixed precision
- Batch Processing: Process large datasets in manageable chunks
Future Enhancements¶
Planned inference improvements include:
- Real-time Inference: Streaming inference for live data
- Model Compression: Quantized models for faster inference
- Distributed Inference: Multi-node inference capabilities
- Adaptive Thresholding: Dynamic confidence thresholds based on data
- Uncertainty Quantification: Confidence intervals for predictions