segger.prediction¶
prediction module for Segger.
Contains the implementation of the Segger model using Graph Neural Networks.
Prediction module for Segger.
Contains prediction scripts and utilities for the Segger model.
load_model ¶
load_model(checkpoint_path)
Load a LitSegger model from a checkpoint.
Parameters¶
checkpoint_path : str Specific checkpoint file to load, or directory where the model checkpoints are stored. If directory, the latest checkpoint is loaded.
Returns¶
LitSegger The loaded LitSegger model.
Raises¶
FileNotFoundError If the specified checkpoint file does not exist.
Source code in src/segger/prediction/predict_parquet.py
138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 |
|
segment ¶
segment(model, dm, save_dir, seg_tag, transcript_file, score_cut=0.5, use_cc=True, file_format='', save_transcripts=True, save_anndata=True, save_cell_masks=False, receptive_field={'k_bd': 4, 'dist_bd': 10, 'k_tx': 5, 'dist_tx': 3}, knn_method='cuda', verbose=False, gpu_ids=['0'], **anndata_kwargs)
Perform segmentation using the model, save transcripts, AnnData, and cell masks as needed, and log the parameters used during segmentation.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
model
|
LitSegger
|
The trained segmentation model. |
required |
dm
|
SeggerDataModule
|
The SeggerDataModule instance for data loading. |
required |
save_dir
|
Union[str, Path]
|
Directory to save the final segmentation results. |
required |
seg_tag
|
str
|
Tag to include in the saved filename. |
required |
transcript_file
|
Union[str, Path]
|
Path to the transcripts Parquet file. |
required |
score_cut
|
float
|
The threshold for assigning transcripts to cells based on similarity scores. Defaults to 0.5. |
0.5
|
use_cc
|
bool
|
If True, perform connected components analysis for unassigned transcripts. Defaults to True. |
True
|
save_transcripts
|
bool
|
Whether to save the transcripts as Parquet. Defaults to True. |
True
|
save_anndata
|
bool
|
Whether to save the results in AnnData format. Defaults to True. |
True
|
save_cell_masks
|
bool
|
Save cell masks as Dask Geopandas Parquet. Defaults to False. |
False
|
receptive_field
|
dict
|
Defines the receptive field for transcript-cell and transcript-transcript relations. Defaults to {'k_bd': 4, 'dist_bd': 10, 'k_tx': 5, 'dist_tx': 3}. |
{'k_bd': 4, 'dist_bd': 10, 'k_tx': 5, 'dist_tx': 3}
|
knn_method
|
str
|
The method to use for nearest neighbors ('cuda' or 'kd_tree'). Defaults to 'cuda'. |
'cuda'
|
verbose
|
bool
|
Whether to print verbose status updates. Defaults to False. |
False
|
**anndata_kwargs
|
Additional keyword arguments passed to the |
{}
|
Returns:
Type | Description |
---|---|
None
|
None. Saves the result to disk in various formats and logs the parameter choices. |
Source code in src/segger/prediction/predict_parquet.py
437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 |
|